Transformations of Ruddlesden–Popper Oxides to New Layered Perovskite Oxides by Metathesis Reactions

J. Gopalakrishnan,*,[†] T. Sivakumar,[†] K. Ramesha,[†] V. Thangadurai,[†] and G. N. Subbanna[‡]

Contribution from the Solid State and Structural Chemistry Unit and Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India

Received May 4, 1999. Revised Manuscript Received January 27, 2000

Abstract: We report transformations of the Ruddlesden–Popper (R–P) oxide, $K_2La_2Ti_3O_{10}$, to layered perovskite oxides, $(Bi_2O_2)La_2Ti_3O_{10}$, $MLa_2Ti_3O_{10}$ (M = Pb, Ba, Sr), and (VO)La_2Ti_3O_{10}, by a novel metathesis reaction with BiOCl, MCl₂, and VOSO₄·3H₂O, respectively. The formation of (VO)La₂Ti₃O₁₀, which occurs in aqueous medium around 100 °C, suggests that the reaction is most likely topotactic, where the structural integrity of the perovskite sheet is preserved. We believe that the method described here provides a new general route for the synthesis/assembly of layered perovskite materials containing MX/M₂X₂ sheets, as indeed shown by the independent report of (CuX)LaNb₂O₇ synthesis by a similar reaction.

Introduction

Among the several lamellar materials derived from the perovskite (CaTiO₃ = ABO₃) structure,¹ the Ruddlesden-Popper (R–P) phases,² $A_2[A'_{n-1}B_nO_{3n+1}]$, and the Aurivillius (A) phases,³ (Bi₂O₂)[$A_{n-1}B_nO_{3n+1}$], are widely investigated for several materials properties.⁴ The perovskite sheet, $[A'_{n-1}B_nO_{3n+1}]$, which may be thought of as derived by slicing the threedimensional (3-D) perovskite structure along one of the cubic directions, is common for both series of oxides. Sr₂TiO₄, Sr₃Ti₂O₇, and Sr₄Ti₃O₁₀ are representative members of the R-P series and Bi₂WO₆, Bi₂SrTa₂O₉, and Bi₄Ti₃O₁₂ are typical members of the A family. Members of the R-P family such as $K_2La_2Ti_3O_{10}$ (n = 3) and $K_2SrTa_2O_7$ (n = 2) containing alkali cations between perovskite sheets^{5,6} exhibit an interlayer reactivity $(K^+/H^+ \text{ exchange})$ that suggests that the alkali cations are weakly bound to the perovskite sheets in these materials. A similar reactivity is not exhibited by R-P phases such as $Sr_4Ti_3O_{10}$ and $Sr_3Ti_2O_7$ containing divalent (Sr^{2+}) cations between the perovskite sheets. Accordingly, we expected that R-P phases such as $K_2La_2Ti_3O_{10}$ and $K_2SrTa_2O_7$ could be transformed to other layered perovskites such as the A phases in metathetical reactions of the kind

$$K_2[A_{n-1}B_nO_{3n+1}] + 2BiOCl →$$

 $(Bi_2O_2)[A_{n-1}B_nO_{3n+1}] + 2KCl (1)$

Indeed the reaction occurs around 800–900 °C transforming both R–P phases to the corresponding A phases, $Bi_2La_2Ti_3O_{12}$ and $Bi_2SrTa_2O_9$, in near-quantitative yields.

Having succeeded in the $R-P \rightarrow A$ transformation, we explored the synthesis of new layered perovskites by this strategy. We could prepare several MLa₂Ti₃O₁₀ (M = Pb, Ba, Sr) and, more importantly, a novel layered perovskite (VO)La₂Ti₃O₁₀ in similar metathetical reactions with MCl₂ and VOSO₄·3H₂O, respectively. While the formation of $MLn_2Ti_3O_{10}$ phases (A = alkali, Ln = rare earth) has been reported already,^{7,8} a layered perovskite containing interlayer $(VO)^{2+}$ cation has not been reported. The facile formation of (VO)La₂Ti₃O₁₀ in aqueous medium around 100 °C suggests that the transformation, $K_2La_2Ti_3O_{10} \rightarrow (VO)La_2Ti_3O_{10}$, is most likely topotactic, replacing the weakly bound interlayer K⁺ ions in the R-P phase by the $(VO)^{2+}$ oxocation. We believe that the metathesis reactions reported here provide a novel route for the assembly of new layered perovskites containing MX/M2X2 sheets, including the technologically important A phases, which find application in ferroelectric nonvolatile memory devices.4f,9 Indeed after the present work was submitted for publication, Kodenkandath et al.¹⁰ reported the synthesis of (CuX)LaNb₂O₇ in a similar reaction between KLaNb₂O₇ and CuX₂ (X = Cl, Br).

^{*} To whom correspondence should be addressed.

[†] Solid State and Structural Chemistry Unit.

[‡] Materials Research Centre.

 ^{(1) (}a) Tilley, R. J. D. In *Chemical Physics of Solids and Their Surfaces*; The Royal Society of Chemistry: London, 1980; Vol. 8, pp 149–160. (b) Wells, A. F. *Structural Inorganic Chemistry*, 5th ed.; Clarendon Press: Oxford, 1984.

⁽²⁾ Ruddlesden, S. N.; Popper, P. Acta Crystallogr. **1957**, *10*, 538–539. Ruddlesden, S. N.; Popper, P. Acta Crystallogr. **1958**, *11*, 54–55.

⁽³⁾ Aurivillius, B. Ark. Kemi **1949**, *1*, 463–480. Aurivillius, B. Ark. Kemi **1950**, 2, 519–527.

^{(4) (}a) Metallicity and superconductivity: Bednorz, J. G.; Müller, K. A. Z. Phys. B. 1986, 64, 189–193. Fukuoka, H.; Isami, T.; Yamanaka, S. Chem. Lett. 1997, 8, 703–704. Armstrong, A. R.; Anderson, P. A. Inorg. Chem. 1994, 33, 4366–4369. (b) Magnetism and colossal magnetoresistance: Moritomo, Y.; Asamitsu, A.; Kuwahara, H.; Tokura, Y. Nature 1996, 380, 141–144. (c) Photocatalytic activity: Takata, T.; Furumi, Y.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Chem. Mater. 1997, 9, 1063–1064. (d) Dielectric properties, see: Frit, B.; Mercurio, J. P. J. Alloys and Compounds 1992, 188, 27–35. (e) Ionic conductivity: Kendall, K. R.; Navas, C.; Thomas, J. K.; zur Loye, H.-C. Chem. Mater. 1996, 8, 642–649. (f) Ferroelectric memory device: Paz de Araujo, C. A.; Cuchiaro, J. D.; McMillan, L. D.; Scott, M. C.; Scott, J. F. Nature 1995, 374, 627–629.

⁽⁵⁾ Gopalakrishnan, J.; Bhat, V. *Inorg. Chem.* **1987**, *26*, 4299–4301.
(6) Ollivier, P. J.; Mallouk, T. E. *Chem. Mater.* **1998**, *10*, 2585–2587.

⁽⁷⁾ Gondrand, M.; Joubert, J.-C. *Rev. Chem. Miner.* 1987, 24, 33–41.
(8) Schaak, R. E.; Mallouk T. E. *J. Am. Chem. Soc.* 2000, 122, 2798–2803.

⁽⁹⁾ Park, B. H.; Kang, B. S.; Bu, S. D.; Noh, T. W.; Lee, J.; Jo, W. *Nature* **1999**, *401*, 682–684.

⁽¹⁰⁾ Kodenkandath, T. A.; Lalena, J. N.; Zhou, W. L.; Carpenter, E. E.; Sangregorio, C.; Falster, A. U.; Simmons, W. B., Jr.; O'Connor, C. J.; Wiley, J. B. J. Am. Chem. Soc. **1999**, *121*, 10743–10746.

Experimental Section

Synthesis. K₂La₂Ti₃O₁₀, K₂SrTa₂O₇, and KLaNb₂O₇ were prepared as reported in the literature.^{5,6,11} K₂La₂Ti₃O₁₀ (10 mmol) was prepared by reacting stoichiometric quantities of KNO3, La2O3 (predried at 900 °C), and TiO₂ at 1000 °C for 2 days with one intermediate grinding. Excess KNO₃ (25 mol %) was added to compensate for the loss due to volatilization. After the reaction, the product was washed with distilled water and dried in air at 200 °C. KLaNb2O7 was prepared similarly at 1100 °C and the washed product was dried at 110 °C in air. K₂SrTa₂O₇ was obtained from reaction of stoichiometric quantities of KNO3, SrCO₃, and Ta₂O₅ with a 200% molar excess of KNO₃ at 1050 °C for 12 h and 1150 °C for 24 h in air with intermediate grindings. The washed product was dried in air at 450 °C. BiOCl was obtained by reacting Bi2O3 with hot 3 N HCl followed by hydrolysis with excess water.12 PbBiO₂Cl was prepared by reacting BiOCl and red PbO at 670 °C for 36 h in air. 13 Blue crystals of VOSO4+3H2O were obtained by passing SO₂ into a suspension of V₂O₅ in concentrated H₂SO₄ as described in the literature.14

Reaction between $K_2La_2Ti_3O_{10}/K_2SrTa_2O_7$ and BiOCl in the solid state was investigated by heating stoichiometric mixtures of the reactants at various temperatures and duration in air. Examination of the products by powder X-ray diffraction (XRD) revealed that the reaction occurred according to eq 1 around 800–900 °C forming A-type phases and KCl as products. With $K_2La_2Ti_3O_{10}$, the reaction was complete at 810 °C after 9 h, while with $K_2SrTa_2O_7$, the reaction required higher temperatures (900 °C for 6 h).

Reaction of $K_2La_2Ti_3O_{10}$ with MCl₂ (M = Pb, Ba, Sr) was found to occur at 600 °C for M = Pb (flowing nitrogen, 48 h) and 750 °C (air, 12 h) for M = Ba, Sr. The reaction between $K_2La_2Ti_3O_{10}$ and VOSO₄· 3H₂O readily occurred in aqueous medium. A sample of 1 mmol of $K_2La_2Ti_3O_{10}$ and 1.5 mmol of VOSO₄·3H₂O in 100 mL of distilled water was refluxed. The reaction was found to be complete in 5 days as judged by EDS analysis and XRD of the product. The solid products in all cases were washed with distilled water and dried in air at 100 °C (at room temperature and 150 °C for (VO)La₂Ti₃O₁₀).

Characterization. Analyses of chemical composition were carried out by energy-dispersive X-ray spectroscopy (EDS) using a JEOL JSM 840-A scanning electron microscope equipped with an EDAX microanalytical system. Structural characterization was made by powder XRD using a Siemens D-5005 powder diffractometer (Cu K α radiation). Unit cell parameters were least-squares refined by the PROSZKI¹⁵ program. Powder XRD intensities were calculated in select cases using the LAZY PULVERIX¹⁵ program. Electron diffraction (ED) patterns of Bi₂La₂-Ti₃O₁₂ were recorded using a JEOL JEM 200-CX transmission electron microscope, and infrared spectra were recorded in KBr pellets using a Perkin-Elmer FTIR spectrometer, model 1000 D.

Results and Discussion

The XRD pattern (Figure 1) of product **1** obtained from the reaction between K₂La₂Ti₃O₁₀ and BiOCl is closely similar to that of Bi₄Ti₃O₁₂¹⁶ and is indexable on an orthorhombic cell with a = 5.441(1) Å, b = 5.399(1) Å, and c = 32.944(4) Å. Similarly, the XRD pattern of product **2** obtained from the reaction between K₂SrTa₂O₇ and BiOCl could be indexed on an orthorhombic cell with a = 5.531(1) Å, b = 5.535(1) Å, and c = 24.965(5) Å, the data being in close agreement with the values reported for Bi₂SrTa₂O₉ in the literature.¹⁷ In both cases, the *c* axis expands by ca. 3.2 Å in going from the R–P

- (13) Ketteres, J.; Kramer, V. Mater. Res. Bull. 1985, 20, 1031–1036.
 (14) Brauer, G. Handbook of Preparative Inorganic Chemistry; Academic
- Press: New York, 1965; Vol. 2, pp 1285–1286. (15) Losocha, W.; Lewinski, K. J. Appl. Crystallogr. 1994, 27, 437–438.

Figure 1. Powder XRD patterns of (a) $K_2La_2Ti_3O_{10}$, (b) $Bi_2La_2Ti_3O_{12}$ obtained from part a, (c) $K_2SrTa_2O_7$, and (d) $Bi_2SrTa_2O_9$ obtained from part c.

phase to the A phase, corresponding to the replacement of interlayer K⁺ ions by $[Bi_2O_2]^{2+}$ units. EDS analyses of both products show the expected metal atom ratios and the absence of K. For product **1**, we have calculated powder XRD intensities assuming the structure of $Bi_4Ti_3O_{12}$ (space group B2cb),¹⁸ where Bi(1) are replaced by La. A comparison of the calculated and observed XRD intensities (Table 1) reveals that the structure of product **1** is indeed similar to that of $Bi_4Ti_3O_{12}$, where Bi atoms in the perovskite sheets are replaced by La. Electron diffraction (ED) and lattice images provide further support to the formation of A phases; for product **1** (Figure 2), we see clearly a ca. 5.5×5.5 Å cell in the a-b plane with a repeat of ca. 16.4 Å in the *c* direction, which is consistent with the powder XRD data. Accordingly, we formulate reaction products **1** and

⁽¹¹⁾ Gopalakrishnan, J.; Bhat, V.; Raveau, B. Mater. Res. Bull. 1987, 22, 413-417.

⁽¹²⁾ Brauer, G. Handbook of Preparative Inorganic Chemistry; Academic Press: New York, 1963; Vol. 1, pp 622-623.

⁽¹⁶⁾ JCPDS File No. 35-0795.

⁽¹⁷⁾ Rae, A. D.; Thompson, J. G.; Withers, R. L. Acta Crystallogr. 1992, *B48*, 418–428.

⁽¹⁸⁾ Dorrian, J. F.; Newnham, R. E.; Smith, D. K.; Kay, M. I. Ferroelectrics 1971, 3, 17–27.

Table 1. X-ray Powder Diffraction Data for $Bi_2La_2Ti_3O_{12}$ (1)

h	k	l	$d_{\rm obs}({\rm \AA})$	$d_{\mathrm{cal}^{a}}(\mathrm{\AA})$	$I_{ m obs}$	$I_{\rm cal}{}^b$
0	0	2	16.532	16.472	31	30
0	0	4	8.239	8.236	11	10
0	0	6	5.487	5.491	14	7
0	0	8	4.119	4.118	6	4
1	1	1	3.794	3.806	10	13
1	1	3	3.610	3.618	4	7
0	0	10	3.302	3.294	14	15
1	1	7	2.967	2.972	100	100
0	0	12	2.746	2.745	6	4
0	2	0	2.702	2.700	35	39
0	2	4	2.567	2.565	3	3
0	2	6	2.422	2.422	4	4
1	11	1		2.359		4
			2.352		19	
0	0	14		2.353		12
0	2	8	2.259	2.258	17	17
1	1	13	2.113	2.114	4	2
0	2	10	2.088	2.088	1	1
0	0	16	2.059	2.058	2	1
0	2	12	1.926	1.925	7	7
2	2	0	1.912	1.916	22	21
2	2	4	1.863	1.866	2	2
0	0	18	1.830	1.830	2	1
2	2	6	1.805	1.809	2	2
2	0	14		1.779		10
			1.777		22	
0	2	14		1.774		10
1	1	17	1.729	1.729	3	3
1	1	3	1.706	1.706	2	2
2	1	14	1.691	1.690	1	1
2	2	10	1.654	1.656	4	3
1	3	7	1.607	1.606	26	34
1	1	19	1.579	1.580	5	5
2	2	12	1.570	1.571	3	3
0	2	18	1.515	1.515	1	1
0	0	22	1.496	1.497	1	1
2	2	14	1.484	1.485	9	11
1	1	21	1.453	1.452	8	9
1	3	13	1.417	1.417	2	1
2	2	16	1.402	1.402	1	1
0	4	0	1.350	1.350	6	7

^{*a*} a = 5.441(1) Å, b = 5.399(1) Å, c = 32.944(4) Å. ^{*b*} Intensities are calculated by LAZY PULVERIX using the atomic coordinates of Bi₄Ti₃O₁₂ where Bi(1) is replaced by La (ref 18).

2 as $Bi_2La_2Ti_3O_{12}$ and $Bi_2SrTa_2O_9$, respectively, having been formed in the metathetical reactions 2 and 3.

$$K_2La_2Ti_3O_{10} + 2BiOCl \rightarrow (Bi_2O_2)La_2Ti_3O_{10} + 2KCl \quad (2)$$

$$K_2SrTa_2O_7 + 2BiOCl \rightarrow (Bi_2O_2)SrTa_2O_7 + 2KCl$$
 (3)

In Figure 3, we show schematically the transformation of $K_2La_2Ti_3O_{10}$ to $Bi_2La_2Ti_3O_{12}$. In a similar reaction between $KLaNb_2O_7$ and $PbBiO_2Cl$ at 810 °C for 9 h, we could prepare another layered perovskite of the formula ($PbBiO_2$)LaNb₂O₇ indicating that ($PbBiO_2$)⁺ could replace the K⁺ in $KLaNb_2O_7$ in between the perovskite sheets.

We investigated the applicability of the metathesis route for the synthesis of other layered perovskites. Thus we could synthesize $MLa_2Ti_3O_{10}$ Dion–Jacobson (D–J) phases¹⁹ for M = Pb, Ba, Sr in a reaction between $K_2La_2Ti_3O_{10}$ and MCl₂. Similar transformations of R–P phases to D–J phases with other rare-earth and M cations have been reported in the literature.^{7,8} Powder XRD patterns of $MLa_2Ti_3O_{10}$ could be indexed on

Figure 2. (a) Electron diffraction (ED) pattern of $Bi_2La_2Ti_3O_{12}$ showing an ca. 5.5 × 5.5 Å cell in the a-b plane. (b) Lattice image of Bi_2La_2 - Ti_3O_{12} showing an ca. 16.4 Å repeat along the *c* direction. The inset shows the corresponding ED pattern.

orthorhombic (M = Ba) or monoclinic (M = Pb, Sr) systems. The lattice parameters are listed in Table 2. The orthorhombic lattice parameters of the M = Ba phase are in agreement with the values reported in the literature²⁰ for BaLa₂Ti₃O₁₀. The monoclinic M = Pb, Sr phases have not been reported to our knowledge. In view of the close similarity of the powder XRD patterns and lattice parameters of MLa₂Ti₃O₁₀ (M = Pb, Sr) to those of BaNd₂Ti₃O₁₀,²¹ we believe that the MLa₂Ti₃O₁₀ members are isotypic with BaNd₂Ti₃O₁₀ consisting of triple perovskite sheets interleaved by large M²⁺ ions.

We have prepared a novel layered perovskite (VO) $La_2Ti_3O_{10}$ in the following reaction.

$$K_{2}La_{2}Ti_{3}O_{10} + VOSO_{4} \cdot 3H_{2}O \rightarrow$$

$$(VO)La_{2}Ti_{3}O_{10} + K_{2}SO_{4} + 3H_{2}O \quad (4)$$

Interestingly, the reaction occurs in aqueous medium under reflux (~ 100 °C). As-prepared material (dried in air at room

^{(19) (}a) Dion, M.; Ganne, M.; Tournoux, M. *Mater. Res. Bull.* **1981**, *16*, 1429–1435. (b) Dion, M.; Ganne, M.; Tournoux, M.; Ravez, J. *Rev. Chim. Miner.* **1984**, *21*, 92–103. (c) Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. *Inorg. Chem.* **1985**, *24*, 3727–3729.

⁽²⁰⁾ Guha, J. P. J. Am. Ceram. Soc. 1991, 74, 878-880; JCPDS file No. 42-0418.

⁽²¹⁾ Olsen, A.; Roth, R. S. J. Solid State Chem. 1985, 60, 347-357.

Figure 3. Schematic representation of the metathetical reaction between $K_2La_2Ti_3O_{10}$ (left) and BiOCl yielding $Bi_2La_2Ti_3O_{12}$ (right) showing replacement of interlayer K^+ by $(Bi_2O_2)^{2+}$ sheets.

compd	crystal system	unit cell parameters (Å)
$(Bi_2O_2)La_2Ti_3O_{10}$	orthorhombic	a = 5.441(1)
		b = 5.399(1)
		c = 32.944(4)
$(B1_2O_2)Sr1a_2O_7$	orthorhombic	a = 5.531(1) b = 5.525(1)
		b = 5.535(1) a = 24.065(5)
(PbBiO_)LaNb_O_	tetragonal	c = 24.903(3) a = 3.896(1)
(10D102)Lar(0207	tetragonar	h = 25.54(1)
PbLa2Ti3O10	monoclinic	a = 7.683(7)
10242113010		b = 7.651(3)
		c = 14.48(1)
		$\beta = 97.8(1)^{\circ}$
BaLa ₂ Ti ₃ O ₁₀	orthorhombic	a = 7.669(1)
		b = 28.616(3)
		c = 3.869(1)
SrLa ₂ Ti ₃ O ₁₀	monoclinic	a = 7.841(2)
		b = 7.641(2)
		c = 14.171(9) $\beta = 100.8(1)^{\circ}$
(VO)LasTisOvo	tetragonal	p = 100.8(1) a = 3.809(2)
(10)Lu ₂ 113010	tetragonar	c = 27.65(1)
		2(1)

Table 2. Lattice Parameters of Layered Perovskites

temperature) is monohydrate (as revealed by thermogravimetry). The water of hydration is lost around 150 °C giving a green crystalline product whose powder XRD pattern (Figure 4) could be indexed on a tetragonal cell with a = 3.809(2) Å and c = 27.65(1) Å. As compared to the anhydrous (VO)La₂Ti₃O₁₀, the hydrated material is rather poorly crystalline showing broad,

Figure 4. Powder XRD patterns of (a) (VO)La_2Ti_3O_{10} \cdot H_2O and (b) (VO)La_2Ti_3O_{10}.

mainly 00l reflections in the XRD pattern, which could also be indexed on a tetragonal cell of approximate lattice parameters a = 3.82 Å and c = 29.46 Å. As compared to the lattice parameters of the parent K₂La₂Ti₃O₁₀ [a = 3.8769(1) Å and c = 29.824(1) Å], there is a considerable decrease (\sim 2.15 Å) in the c parameter of anhydrous (VO)La₂Ti₃O₁₀, which is consistent with the replacement of the two larger K^+ ions (ionic radius 1.55 Å in 9-coordination) by the smaller $(V=O)^{2+}$ cation (bond distance ~ 1.63 Å)²² in the interlayer space. The presence of a strong infrared absorption around 1010 cm⁻¹ which is characteristic of the (V=O)²⁺ stretch²³ both in the hydrated and anhydrous materials and the near absence of K in the EDS together with the V:La:Ti atomic ratio of 0.98:2:3 (expected ratio for stioichiometric (VO)La₂Ti₃O₁₀ is 1:2:3) clearly reveals that the metathesis reaction proceeds according to eq 4, yielding a new layered perovskite (VO)La₂Ti₃O₁₀.

While the metathesis reactions with BiOCl, PbBiO₂Cl, and MCl₂ which occur at considerably high temperatures (600–900 °C) are not likely topotactic, the facile occurrence of reaction 4 in aqueous medium around \sim 100 °C suggests that it is most likely topotactic, where the integrity of the perovskite sheets is preserved during the chemical transformation. Further work is essential to establish the actual structure of (VO)La₂-Ti₃O₁₀ and the topotactic nature of reaction 4.

Conclusion

While metathesis reactions involving exchange of atomic/ ionic species between the reactants are well-known in solidstate chemistry,²⁴ for example $MoCl_5 + {}^{5}\!/_2Na_2S \rightarrow MoS_2 +$ $5NaCl + {}^{1}\!/_2S$, the metathesis reported here is unique in that it involves replacement of interlayer alkali cations in R-P phases by structural entities such as $(Bi_2O_2)^{2+}$, $(PbBiO_2)^+$, and $(VO)^{2+}$. The formation of $(VO)La_2Ti_3O_{10}$ is particularly significant since

⁽²²⁾ Longo J. M.; Arnott, R. J. J. Solid State Chem. 1970, 1, 394–398.
(23) Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed.; Wiley-Interscience: New York, 1970; p 114.

^{(24) (}a) Wiley, J. B.; Kaner, R. B. Science **1992**, 255, 1093–1097. (b) Gillan, E. G.; Kaner, R. B. Chem. Mater. **1996**, 8, 333–343.

Transformations of Ruddlesden-Popper Oxides

it occurs at ~100 °C in aqueous medium. We believe the significance of the present work goes beyond the transformation of R–P phases reported here; the strategy could in principle be extended to the synthesis/assembly of novel layered materials containing dimensionally compatible $[MX]^{n+}/[M_2X_2]^{n+}$ layered units, as indeed is shown by the recent synthesis of (CuX)-LaNb₂O₇ by Kodenkandath et al.¹⁰

Acknowledgment. We thank the Department of Science and Technology, Government of India (Project No. SP/S1/H-17/

97), for financial support. We also thank Professor K. Venkatesan for helpful discussions on the crystal structure of $Bi_4Ti_3O_{12}$.

Supporting Information Available: Powder XRD data for (PbBiO₂)LaNb₂O₇ and MLa₂Ti₃O₁₀ (M = Ba, Sr, Pb) (PDB). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9914644